電纜附件資訊
電纜附件電應力控制方法:
電應力控制是中高壓電纜附件設計中的極為重要的部分。
電應力控制是對電纜附件內(nèi)部的電場分布和電場強度實行控制,也就是采取適當?shù)拇胧沟秒妶龇植己碗妶鰪姸忍幱谧罴褷顟B(tài),從而提高電纜附件運行的可靠性和使用壽命。對于電纜終端而言,電場畸變最為嚴重,影響終端運行可靠性最大的是電纜外屏蔽切斷處,而電纜中間接頭電場畸變的影響,除了電纜外屏蔽切斷處,還有電纜末端絕緣切斷處。為了改善電纜絕緣屏蔽層切斷處的電應力分布,一般采用以下幾種方法:
1、電纜附件電應力控制幾何形狀法:
采用應力錐緩解電場應力集中:應力錐設計是常見的方法,從電氣的角度上來看也是最可靠的最有效的方法。應力錐通過將絕緣屏蔽層的切斷處進行延伸,使零電位形成喇叭狀,改善了絕緣屏蔽層的電場分布,降低了電暈產(chǎn)生的可能性,減少了絕緣的破壞,保證了電纜的運行壽命。采用應力錐設計的電纜附件有繞包式終端、預制式終端、冷縮式終端。
2、電纜附件電應力控制參數(shù)控制法:
采用高介電常數(shù)材料緩解電場應力集中高介電常數(shù)材料:采用應力控制層:上世紀末國外開發(fā)了適用于中壓電纜附件的所謂應力控制層。其原理是采用合適的電氣參數(shù)的材料復合在電纜末端屏蔽切斷處的絕緣表面上,以改變絕緣表面的電位分布,從而達到改善電場的目的。
另一方法是增大屏蔽末端絕緣表面電容(Cs),從而降低這部分的容抗,也能使電位降下來,容抗減小會使表面電容電流增加,但不會導致發(fā)熱,由于電容正比于材料的介電常數(shù),也就是說要想增大表面電容,可以在電纜屏蔽末端絕緣表面附加一層高介電常數(shù)的材料。
目前應力控制材料的產(chǎn)品已有熱縮應力管、冷縮應力管、應力控制帶等等,一般這些應力控制材料的介電常數(shù)都大于20,體積電阻率為108-1012Ω.cm。應力控制材料的應用,要兼顧應力控制和體積電阻兩項技術要求。雖然在理論上介電常數(shù)是越高越好,但是介電常數(shù)過大引起的電容電流也會產(chǎn)生熱量,促使應力控制材料老化。同時應力控制材料作為一種高分子多相結(jié)構復合材料,在材料本身配合上,介電常數(shù)與體積電阻率是一對矛盾,介電常數(shù)做得越高,體積電阻率相應就會降低,并且材料電氣參數(shù)的穩(wěn)定性也常常受到各種因素的影響,在長時間電場中運行,溫度、外部環(huán)境變化都將使應力控制材料老化,老化后的應力控制材料的體積電阻率會發(fā)生很大的變化,體積電阻率變大,應力控制材料成了絕緣材料,起不到改善電場的作用,體積電阻率變小,應力控制材料成了導電材料,使電纜出現(xiàn)故障。
這就是應用應力控制材料改善電場的熱縮式電纜附件為什么只能用于中壓電力電纜線路和熱縮式電纜附件經(jīng)常出現(xiàn)故障的原因所在,同樣采用冷縮應力管和應力控制帶的電纜附件也有類似問題。采用非線性電阻材料---非線性電阻材料(FSD)也是近期發(fā)展起來的一種新型材料,它利用材料本身電阻率與外施電場成非線性關系變化的特性,來解決電纜絕緣屏蔽切斷處電場集中分布的問題。非線性電阻材料具有對不同的電壓有變化電阻值的特性。當電壓很低的時候,呈現(xiàn)出較大的電阻性能;當電壓很高的時候,呈現(xiàn)出較小的電阻性能。采用非線性電阻材料能夠生產(chǎn)出較短的應力控制管,從而解決電纜采用高介電常數(shù)應力控制管終端無法適用于小型開關柜的問題。
非線性電阻材料亦可制成非線性電阻片(應力控制片),直接繞包在電纜絕緣屏蔽切斷處上,緩解這一點的應力集中的問題。
上一篇:中低壓電纜附件的主要種類有哪些?
上一篇:電纜附件的電場分布原理